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Abstract

Familial hypobetalipoproteinemia (FHBL), caused by apolipo-
protein B (APOB) variants, disrupts APOB-containing lipopro
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tein synthesis, leading to reduced serum total cholesterol, 
low-density lipoprotein cholesterol, and APOB. Heterozygous 
carriers are often asymptomatic, while homozygotes exhibit 
severe manifestations like malabsorption, vitamin deficien-
cies, and hepatic steatosis. In recent years, FHBL has at-
tracted increasing attention due to its association with liver 
disease and its role as a unique monogenic model of stea-
totic liver disease independent of cardiometabolic risk fac-
tors. Mechanistically, lipid overload, endoplasmic reticulum 
stress, oxidative damage, and impaired autophagy may drive 
hepatocellular injury and fibrosis. Challenges include insuf-
ficient diagnosis, sparse epidemiological data, and unclear 
disease progression. Enhanced genetic testing, mechanistic 
research, and longitudinal studies are critical to improving di-
agnosis, risk assessment, and therapies for FHBL-associated 
liver disease.
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Introduction
Familial hypobetalipoproteinemia (FHBL) type 1 (OMIM 
615558) is a rare, autosomal codominant monogenic disor-
der caused by variants in the apolipoprotein B (APOB) gene 
on chromosome locus 2p24.1.1–3 According to the latest dis-
ease classification, it is categorized as lipoprotein assembly 
and secretion defect type 2, namely FHBL-SD2, commonly 
known as FHBL (hereinafter referred to as FHBL for FHBL-
SD2).4 Affected individuals exhibit lifelong low plasma levels 
of total cholesterol, low-density lipoprotein cholesterol (LDL-
C), or APOB, typically below the 5th percentile for age and 
gender.3,5 In the 1980s, Young et al. first established the 

molecular genetic link between FHBL and APOB.6 Epidemio-
logical data from Framingham, USA, showed that heterozy-
gous FHBL (He-FHBL) cases occur in about 1:1,000–1:3,000 
individuals, while homozygous or compound heterozygous 
FHBL (Ho-FHBL) cases are extremely rare, with a prevalence 
of less than one in a million.7 Large-scale sequencing stud-
ies indicated that APOB protein-truncating variants causing 
FHBL occur in about 0.1% of the general population.8 Cur-
rently, global epidemiological data are mainly limited to case 
reports, family studies, or haplotype analyses.

Although FHBL patients are considered protected from 
atherosclerotic cardiovascular disease due to lifelong low 
LDL-C,9 there is increasing recognition that FHBL is fre-
quently associated with hepatic steatosis, and in a subset of 
cases, progression to steatohepatitis, liver fibrosis, cirrhosis, 
and even hepatocellular carcinoma (HCC).10–13 These hepatic 
changes can occur in the absence of common cardiometabol-
ic risk factors, distinguishing FHBL from metabolic dysfunc-
tion-associated steatotic liver disease (MASLD, formerly non-
alcoholic fatty liver disease) and steatohepatitis (formerly 
non-alcoholic steatohepatitis), and positioning FHBL as a 
unique monogenic model for studying the natural history and 
molecular mechanisms underlying steatotic liver disease.14 
Recent advances in molecular genetics have refined our un-
derstanding of APOB-related pathophysiology, yet critical 
questions remain unanswered, particularly regarding why 
some FHBL patients develop progressive liver disease while 
others remain stable, and what the specific mechanisms and 
molecular pathways are for the occurrence and development 
of liver disease.

This review aims to refocus attention on the hepatic as-
pects of FHBL by (i) summarizing current knowledge of mo-
lecular genetics, (ii) analyzing the spectrum and progres-
sion of liver disease in affected individuals, (iii) exploring 
mechanistic hypotheses that may explain liver disease, and 
(iv) outlining the clinical treatment plan. We aim to establish 
FHBL not only as a disorder of lipid metabolism but also as 
a valuable window into the pathogenesis of steatotic liver 
disease.

Molecular pathogenesis of APOB
The APOB gene encodes two tissue-specific isoforms: APOB-
100 in the liver and APOB-48 in the intestine, essential for 
the assembly and secretion of very-low-density lipoprotein 
(VLDL) and chylomicrons, respectively.15 Therefore, APOB is 
a “molecular truck” for lipid transport in the whole body, and 
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its function is directly related to the balance of liver–intesti-
nal lipid metabolism (Fig. 1).

To date, more than 140 genetic variants in APOB have 
been identified in FHBL,7 including missense variants,16–18 
shifted code variants,19–21 nonsense variants,11,19,20,22 and 
splice-site variants.20,23 Variants can impair every step of 
the APOB lifecycle, including its synthesis, protein folding, 
lipidation, VLDL assembly, secretion, and clearance (Fig. 2). 
Most pathogenic variants result in truncated APOB proteins, 
and the extent of truncation is a key determinant of func-
tional output: longer truncations (e.g., APOB-80 or APOB-75) 
may still support partial VLDL secretion, while shorter forms 
(e.g., APOB-60) behave more like APOB-48.24 A quantitative 
relationship has been observed—each 1% truncation corre-
lates with an approximate 1.4% reduction in secretion effi-
ciency.25 In both humans and mice, truncated APOB proteins 
have been associated with lower productivity and acceler-
ated clearance rates.26–28 In addition to truncations, several 
missense variants in the βα1 domain have been shown to 
specifically impair APOB-48 secretion29–31 and enhance post-
endoplasmic reticulum (ER) degradation,31 and variants near 
the receptor-binding domain can increase low-density lipo-

protein catabolism.18 Beyond classic truncations, APOB de-
fects may arise from splice-site variants and mobile element 
insertions. Minigene assays confirmed that cryptic splicing 
can generate premature truncations, reclassifying uncertain 
variants as pathogenic.32 Recently, an AluYa5 insertion in 
exon 3 was reported, causing exon skipping and a premature 
stop codon, undetectable by routine pipelines.33 These find-
ings stress the need for functional splicing assays and MEI 
calling in FHBL diagnosis.

Although structural studies have advanced understand-
ing of APOB–low-density lipoprotein receptor interactions,34 
the full structure–function relationships remain incompletely 
defined. Structure determines function, and these molecular 
defects form the basis of APOB dysfunction in lipid binding 
and related processes, setting the stage for subsequent dis-
ease progression.

Pathophysiology of the liver in FHBL
Due to the aberrant mutant APOB proteins, hepatic export 
of triglycerides via VLDL is impaired, resulting in intrahepatic 
triglyceride accumulation. Possible pathological factors such 

Fig. 1.  Normal metabolic pathway of APOB in the body. Under physiological conditions, newly synthesized APOB-100 in hepatocytes is processed in the endoplas-
mic reticulum and Golgi. Lipids such as triglycerides, cholesterol esters, and phospholipids are added to form VLDL. This process is regulated by lipid availability and 
microsomal triglyceride transfer protein activity, which is an endoplasmic reticulum–resident chaperone essential for APOB lipidation. In the blood, VLDL is converted 
to IDL and LDL by interacting with tissue lipoprotein lipase and gradually releasing triglycerides. These particles are ultimately cleared by the LDL receptor on the sur-
face of hepatocytes. In the intestine, APOB -48 packages dietary lipids into chylomicrons. After lymphatic secretion, chylomicrons enter the blood, where LPL converts 
them to remnant particles. These remnants (containing APOB-48) are cleared by the hepatic LDL receptor and LDL receptor-related protein. APOB, apolipoprotein B; 
CMs, chylomicrons; CM remnant, chylomicron remnant; VLDL, very low-density lipoprotein; IDL, intermediate-density lipoprotein; LDL, low-density lipoprotein; LPL, 
lipoprotein lipase; HL, hepatic lipase.
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as lipid metabolism disorders, ER stress, and autophagy dys-
function are involved in the development of liver diseases 
(Fig. 3). It is worth noting that hepatic steatosis in FHBL pa-
tients often occurs in the absence of systemic insulin resist-
ance35–38 and does not appear to substantially elevate dia-
betes risk,39 indicating that lipid deposition and liver injury 
in FHBL may primarily result from lipoprotein metabolism 
abnormalities rather than insulin resistance. While current 
research has partially revealed the hepatic pathological con-
sequences of FHBL, the exact mechanisms driving steato-
hepatitis and fibrosis remain elusive.

Abnormal lipid metabolism

To investigate hepatic lipid metabolism dysregulation, Lin 
et al.40–42 studied APOB-38.9 mutant mice in detail. Com-

pared to wild-type controls, liver triglyceride content in-
creased twofold in heterozygous and fourfold in homozy-
gous mice, consistent with a fatty liver phenotype.40 The 
hepatic mRNA expression of sterol regulatory element-
binding protein-1c, fatty acid synthase, and stearoyl-CoA 
desaturase-1 decreased in a gene-dose-dependent man-
ner; in contrast, the key molecules involved in fatty acid 
β-oxidation, i.e., peroxisome proliferator-activated receptor 
α and carnitine acyltransferase 1, remained unchanged.40 
This dissociation between suppressed lipogenesis and pre-
served β-oxidation suggests a compensatory adaptation to 
hepatic lipid overload, though this adaptation is insufficient 
to prevent steatosis. Further analysis revealed adaptive 
metabolic reprogramming in a gene-dose-dependent man-
ner, including downregulation of cholesterol biosynthesis 
(3-hydroxy-3-methylglutaryl-coenzyme A reductase, ster-

Fig. 2.  Mutated APOB-mediated impaired VLDL assembly-secretion-degradation pathway. APOB mutations reduce its synthesis, enhance intracellular deg-
radation, and impair its ability to bind triglycerides and cholesteryl esters, leading to decreased VLDL assembly and secretion. Concurrently, the secreted VLDL parti-
cles exhibit structural defects, resulting in enhanced vascular clearance and reduced plasma levels. Meanwhile, failed VLDL export increases intracellular triglyceride 
deposition. APOB, apolipoprotein B; TG, triglyceride; CE, cholesterol esters; MTTP, microsomal triglyceride transfer protein; VLDL, very low-density lipoprotein; IDL, 
intermediate-density lipoprotein; LDL, low-density lipoprotein.
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ol-C5-desaturase, and 7-dehydrocholesterol reductase) and 
low-density lipoprotein receptor-mediated uptake pathways, 
coupled with enhanced cholesterol efflux (ATP-binding cas-
sette subfamily G member 5/8).42 Under the stimulation of 
high-fat and low-fat diets, liver triglyceride deposition in het-
erozygous mice significantly increased. Interestingly, dietary 
composition exerted differential effects: the low-fat diet up-
regulated the expression of fatty acid synthase and stearoyl-
CoA desaturase-1 in both wild-type and heterozygous mice, 
whereas the high-fat diet inhibited the expression of both in 
the wild type (not significantly in the heterozygous mice).41 
This implies that dietary fat content modulates hepatic stea-
tosis through distinct pathways, highlighting the complex 
interaction between genetics and nutrition in FHBL. Fur-
thermore, a pediatric FHBL case (APOB-26.87 variant) pre-
sented with cholesterol gallstones, suggesting cholesterol 
metabolism disorders in the liver.43 Compared to APOB-38.9 
mutant mice, APOB-27.6 mice exhibited greater hepatic tri-
glyceride accumulation and reduced secretion rates.44 This 
phenotype arose from two key factors: impaired triglyceride 
transport/secretion capacity and accelerated plasma clear-
ance of APOB-27.6–containing lipoproteins. The peptide 
segment differentiating APOB-27.6 from APOB-38.9 ap-
pears functionally critical. As this clearance mechanism is 
APOE-independent, other factors likely mediate lipoprotein 
particle clearance. Moreover, Hendriks et al.45 developed an 
FHBL liver organoid model, identifying glucose-driven de 
novo lipogenesis as the main cause of spontaneous steato-
sis and fatty acid desaturase 2 as a key regulator. Although 
the model was based on CRISPR-mediated APOB knockout, 
which differs from clinical APOB variants, it nonetheless 
highlights the role of dysregulated de novo lipogenesis in 

disease pathogenesis. This human model system provides 
a platform for studying cell-autonomous mechanisms and 
screening drugs that specifically target lipid synthesis in 
FHBL. The convergence of mouse and organoid models on 
enhanced lipogenesis as a key driver suggests that targeting 
this pathway may be beneficial.

Endoplasmic reticulum stress and oxidative stress
Due to the defect in the production of APOB leading to lipid 
overload in the liver, it can be hypothesized that the lipotox-
icity involved may directly trigger ER stress and oxidative 
stress.42,46 Clinical evidence supports this hypothesis: liver 
biopsies from FHBL patients reveal ER and mitochondrial ab-
normalities.21 In vitro cell models further support this mech-
anistic link: in MCA cells, overexpression of wild-type APOB-
50 and the APOB-50N158–1496 truncation mutant induced 
glucose-regulated protein 78 expression and eukaryotic ini-
tiation factor 2 phosphorylation, and further knockdown of 
APOB-50 significantly attenuated ER stress.47 This implies 
that truncated APOB variants may impose a proteotoxic bur-
den on the ER. Meanwhile, ER stress also regulates APOB 
in turn. In another study, glucosamine-induced ER stress in 
HepG2 cells suppressed APOB-100 synthesis and enhanced 
degradation via the ubiquitin–proteasome system,48 largely 
mediated by activation of the protein kinase R-like ER ki-
nase (PERK) pathway.49 Co-transfection experiments of 
APOB proteins (APOB-15, APOB-50, APOB-100) and PERK 
modulators further confirmed that PERK activity inhibited 
both truncated and full-length forms of APOB synthesis, re-
inforcing the crosstalk between ER stress sensors and APOB 
regulation. Interestingly, ER stress exhibits a biphasic effect 
on APOB-100 secretion: moderate fatty acid exposure en-
hances secretion, while high levels inhibit it.50 A recent study 
has shown that under ER stress conditions, the inhibition of 
protein disulfide isomerase affects the oxidative folding of 
microsomal triglyceride transfer protein (a protein crucial for 
APOB lipidation), thereby influencing the unsaturated fatty 
acid transport process mediated by APOB-100.51 This further 
demonstrates the damaging effect of ER stress on the APOB-
VLDL pathway.

In addition, oxidative stress can further impair the ex-
pression and function of APOB. Pan et al. showed that lipid 
peroxidation promotes APOB-100 degradation via the post-
ER presecretory proteolysis pathway and impairs VLDL se-
cretion, while antioxidants such as vitamin E attenuate this 
effect.52 Andreo et al. identified superoxide anions as key 
drivers, acting through lipid peroxidation, with superoxide 
dismutase 1 overexpression or mimetics providing protec-
tion.53 Importantly, APOB-100 degradation depends on lipid 
peroxide accumulation rather than superoxide levels alone. 
Consistently, APOB-38.9 mice showed gene dose–depend-
ent lipid peroxidation and upregulation of Cyp4A10.42 Thus, 
oxidative stress, particularly lipid peroxidation, is a central 
regulator of hepatic APOB-100 stability and VLDL secretion. 
Therefore, antioxidants may help restore lipid and lipoprotein 
homeostasis within the ER.54 Worse still, a mutually reinforc-
ing cycle exists between ER stress and oxidative stress,55,56 
inducing a series of apoptotic and inflammatory responses.57 
This ultimately culminates in cellular homeostasis collapse. 
Multiple lines of evidence have shown that ER stress and 
oxidative stress contribute not only to lipid dysregulation but 
also intersect with key inflammatory and fibrogenic path-
ways that drive progression from hepatic steatosis to stea-
tohepatitis and fibrosis.46,58,59 Taken together, we reasonably 
speculate that in FHBL, lipid overload, ER stress, and oxida-
tive stress may interact bidirectionally, though further in vivo 
validation is needed.

Fig. 3.  Pathogenic mechanisms of liver disease in FHBL. The pathologi-
cal pathways involved in the development of liver disease in FHBL include lipid 
metabolism disorders, endoplasmic reticulum stress, oxidative stress, and au-
tophagy dysfunction, which are interrelated. The key molecular participants are 
highlighted in the figure. FHBL, familial hypobetalipoproteinemia assembly and 
secretion defect type 2; SREBP-1c, sterol regulatory element-binding protein 1c; 
FAS, fatty acid synthase; SCD-1, stearoyl-CoA desaturase-1; CPT-1, carnitine 
palmitoyltransferase-1; PPARα, peroxisome proliferator-activated receptor al-
pha; ACC-1, acetyl-CoA carboxylase-1; DGAT, diacylglycerol O-acyltransferase; 
HMGCR, 3-hydroxy-3-methylglutaryl-CoA reductase; ABCG1, ATP-binding cas-
sette transporter G1; LDLR, low-density lipoprotein receptor; LC3-I/II, micro-
tubule-associated protein 1A/1B-light chain 3; ULK1, unc-51-like autophagy 
activating kinase 1; PLIN2/3, perilipin 2/3; ER, endoplasmic reticulum; PERK, 
PKR-like ER kinase; eIF2, eukaryotic initiation factor 2; IRE1, inositol-requiring 
enzyme 1; ATF6, activating transcription factor 6; ATF4, activating transcription 
factor 4; CHOP, C/EBP-homologous protein; GRP78, glucose-regulated protein 
78; ROS, reactive oxygen species; MDA, malondialdehyde; SOD, superoxide 
dismutase; GSH/GSSG, glutathione/glutathione disulfide.
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Autophagy dysfunction
Autophagy, particularly lipophagy (selective degradation of 
lipid droplets), is a key pathway for intracellular lipid turno-
ver and cellular homeostasis. In the early stage of hepatic 
steatosis, lipid droplet–associated protein perilipin-2 under-
goes phosphorylation, which recruits microtubule-associated 
protein light chain 3-II to autophagosomes, leading to the 
formation of lipophagosomes that subsequently fuse with 
lysosomes to degrade lipid droplets.60 During the appropri-
ate stress process, the activation of the three branches of 
the unfolded protein response in the ER can promote au-
tophagy through various pathways.61 However, in an exces-
sive ER stress environment, impaired autophagosome–lyso-
some fusion inhibits lipid droplet autophagy, leading to lipid 
droplet accumulation and further aggravating ER stress and 
reactive oxygen species generation in a vicious cycle.62 Of 
note, a regulatory link exists between autophagy and APOB. 
Autophagy can target APOB for degradation via the trans-
membrane protein sortilin,63 and sortilin deficiency under li-
pid overload or ER stress leads to increased APOB secretion. 
Conlon et al.64 pointed out that liver-specific APOB antisense 
oligonucleotide treatment induced ER lipid accumulation and 
stress in the short term (three weeks), but activated ER-se-
lective autophagy and enhanced fatty acid β-oxidation in the 
longer term (six weeks), thereby preventing cytoplasmic lipid 
overload. This study provides a new perspective on targeting 
autophagy for the treatment of FHBL related hepatic steato-
sis. Previous studies have proved that enhancing lipophagy 
in hepatocytes significantly reduces steatosis and hepatic 
inflammation,65 and macrophage lipophagy mitigates liver 
inflammation.66 Therefore, targeting the autophagy pathway 
may also represent a potential therapeutic strategy, although 
further experimental evidence is needed.

Hepatic manifestations and clinical heterogeneity in 
FHBL
FHBL exhibits substantial clinical heterogeneity, with liver 
disease being a core but variably expressed component. The 
degree and trajectory of liver involvement appear to be influ-
enced by APOB mutation type, residual protein function, and 
various genetic or environmental modifiers. Therefore, the 
hepatic outcomes in FHBL vary widely, ranging from isolated 
hepatic steatosis to steatohepatitis, fibrosis, cirrhosis, and 
HCC.

Hepatic steatosis and steatohepatitis
Recently, a retrospective study of 15 patients with FHBL re-
vealed a mean onset age of 22.5 ± 15.5 years, with 13 He-
FHBL patients and one Ho-FHBL patient presenting hepatic 
steatosis that correlated strongly with fat-soluble vitamin 
deficiencies (particularly vitamins A and D), and the only 
Ho-FHBL patient had mild hepatic steatosis (grade 1).67 A 
large non-Hispanic pediatric non-alcoholic fatty liver disease 
cohort study found that nearly one-tenth of the participants 
had hypobetalipoproteinemia. Patients with low serum LDL-C 
exhibited higher hepatic steatosis scores, but no differences 
were observed in hepatic inflammation or fibrosis scores be-
tween different groups.68 Also, hepatic steatosis has been 
observed in He-FHBL adolescents aged 13–15 years, includ-
ing cases with normal serum transaminase levels, suggest-
ing steatosis may occur even in the absence of biochemical 
liver injury.69 Patients may maintain their status quo for a 
considerable time, and only some of them will progress to 
steatohepatitis or fibrosis,21,23,70 but the specific proportion 
has not been supported by large-scale epidemiological data.

Liver cirrhosis and HCC
The exact frequency of liver fibrosis and cirrhosis in patients 
with FHBL remains uncertain. Although only a small subset 
of patients progresses to cirrhosis and HCC, recent cohort 
studies have begun to clarify the cumulative incidence. A 
cohort study of Ho-FHBL patients demonstrated that three 
out of four newly diagnosed cases exhibited liver stiffness 
measurements consistent with clinically significant fibrosis, 
while six out of nine previously reported cases had biopsy-
confirmed hepatic fibrosis, including three cases progressing 
to cirrhosis.21 Some case reports described the occurrence 
of cirrhosis and HCC in He-FHBL13,71–75 and Ho-FHBL21,76,77 
patients, particularly in young adults,70 underscoring the 
critical importance of early recognition and longitudinal 
monitoring.

Previous studies have pointed out through proteomic 
and genomic analysis that the level of circulating APOB is 
negatively correlated with the risk of liver cancer.78 Recently, 
Wargny et al.79 demonstrated that individuals with primary 
low LDL-C levels (including FHBL) showed significantly higher 
rates of cirrhosis and/or primary liver cancer compared to 
individuals with LDL-C levels between the 40th–60th percen-
tiles (0.32 vs. 0.07 and 0.69 vs. 0.21 per 1,000 person-years 
in the CONSTANCES and UK Biobank cohorts, respectively), 
corresponding to a 4.5-fold and 3.3-fold increased risk. This 
risk persists independently of obesity, diabetes, alcohol use, 
and viral hepatitis, even after multivariable adjustment and 
five-year landmark analysis. FHBL patients showed the high 
risk, with an incidence density ratio of 4.19 (95% CI, 1.74–
10.1) for cirrhosis and/or primary liver cancer, even in the 
absence of other risk factors. Notably, individuals with LDL-C 
levels < 1st percentile are associated with a further increased 
risk (eightfold and fivefold increased risk in the CONSTANCES 
and UK Biobank cohorts, respectively), suggesting a direct 
role of low LDL-C in liver disease pathogenesis. In another 
cohort of 104 adults with primary hypobetalipoproteinemia, 
the prevalence of hepatic steatosis and significant fibrosis 
was 31.7% and 14.4%, respectively. Pathogenic APOB vari-
ants were the strongest risk factor for steatosis (OR = 5.56), 
affecting nearly half of carriers at an earlier age, and were 
more frequent in patients with fibrosis, though without sta-
tistical significance.80

Notably, some long-term follow-up studies report no stea-
tohepatitis or hepatic fibrosis even after decades in some 
FHBL patients with hepatic steatosis.81 A 52-year-old Ho-
FHBL female patient (c.819-2A>G splice-site variant) was 
followed up for 40 years.82 She presented with diarrhea and 
growth retardation at birth, with undetectable serum LDL-C 
and APOB levels. After over 40 years of high-dose oral vita-
min therapy (vitamins A, D, E, and K), her clinical condition 
remained stable. However, follow-up data on liver disease 
were not available, suggesting either no abnormalities or at 
least no severe hepatic involvement; high-dose oral fat-solu-
ble vitamin therapy may play a role in this process.

Contributing factors to disease progression
The primary factors leading to clinical heterogeneity are zy-
gosity and APOB variant sites. Ho-FHBL patients may pre-
sent with a series of clinical manifestations from infancy 
to adulthood, involving problems in growth and develop-
ment, digestive nutrition, hematology, the nervous system, 
and ophthalmology (Table 1),3,7,81,83–85 most of which are 
diagnosed in adulthood (mean age at diagnosis, 21 years 
old).83 In a pooled analysis of 55 homozygous cases, 62% 
exhibited hepatic manifestations, including elevated serum 
transaminases, fatty liver, hepatomegaly, liver fibrosis, and 



Journal of Clinical and Translational Hepatology 20256

Lou T.W. et al: Familial hypobetalipoproteinemia related liver diseases

cirrhosis.76 Abnormal APOB impairs chylomicron assembly 
and lipid absorption, leading to symptoms such as vomiting 
and abdominal distension, with endoscopy revealing a char-
acteristic “gelée blanche” appearance.84 However, He-FHBL 
patients are usually asymptomatic or have mild liver enzyme 
abnormalities and simple hepatic steatosis (Table 1). An es-
timated 5–10% of patients progress to non-alcoholic steato-
hepatitis, though advanced liver disease is rare.83

Shorter truncations typically result in more severe phe-
notypes,86 while longer truncations may preserve partial li-
poprotein secretion capacity and are associated with milder 
or subclinical presentations. Data show more severe pheno-
types occur with protein-truncating variants (≤30% residual 
length) than with those preserving ≥32% protein length, 
the latter generally causing moderate disease.83 Except 
for nonsense variants, certain pathogenic variants at criti-
cal genomic loci (e.g., the splice variants c.11788+1G>A67 
and c.1471-1G>A23) may correlate with aggravated disease 
manifestations or accelerated progression. Ho-FHBL vari-
ants generally lead to more profound systemic and hepatic 
involvement compared to heterozygous variants. Neverthe-
less, genotype alone does not fully explain disease variability. 
Of note, a 48-year-old woman with a homozygous variant of 
APOB-45.2 remained asymptomatic despite an undetectable 
LDL-C level and a very low level of APOB.87

In addition to genetic factors, additional hits such as al-
cohol use, hepatitis virus infection, excessive caloric intake, 
metabolic syndrome, and liver injury can accelerate disease 
progression.23 Studies have shown that obesity and insulin 
resistance are key synergistic factors that accelerate liver 
fibrosis,21 and early-onset diabetes (<40 years) is strongly 
associated with end-stage liver disease. Progression from 
simple steatosis through steatohepatitis to cirrhosis has been 
reported in patients consuming 70–80 g of alcohol per day.23 
This discrepancy suggests a multifactorial pathogenesis in-
volving additional modifiers. Additionally, polygenic interac-
tions may contribute to more severe clinical phenotypes. 
For example, Wang et al. reported a patient with multiple 
rare heterozygous variants (APOB, MTTP, PCSK9, SAR1B, 
ANGPTL3),88 resulting in extremely low serum LDL-C and 
fat-soluble vitamin levels, though without liver abnormali-
ties. PNPLA3 and TM6SF2 have been extensively validated 
as risk factors for MASLD,89,90 and the TM6SF2 E167K and 
PNPLA3 I148M variants can promote the profibrotic pheno-

type of hepatic stellate cells.91,92 Cases have been reported 
with combined APOB and PNPLA3 variants leading to fibrosis 
or cirrhosis,93 and triple variants (APOB, PNPLA3, TM6SF2) 
identified in patients with cirrhosis or HCC.94 These findings 
underscore the synergistic effect of multiple genetic variants 
in promoting liver disease progression. Overall, the variabil-
ity in hepatic outcomes likely reflects the interplay of multiple 
factors (Fig. 4).

Diagnosis and differential diagnosis
The diagnosis of FHBL requires a comprehensive clinical, 
biochemical, and genetic approach. Ho-FHBL individuals 
typically present in infancy with chronic diarrhea, growth 
retardation, or characteristic endoscopic findings,81 while 
He-FHBL individuals are often incidentally detected due to 
asymptomatic low serum LDL-C or APOB levels, with mildly 
elevated transaminases or hepatic steatosis on imaging. For 
suspected patients, a thorough medical history should spe-
cifically assess the presence of metabolic disorders and fam-
ily history. Initial evaluation requires serum lipid profiling, 
which usually shows significant reductions in total cholester-
ol, LDL-C, or APOB.81 Note that excessively truncated APOB 
proteins may not be detectable in plasma (e.g., APOB-5.44 
to APOB-30.40).95 In addition, the levels of fat-soluble vita-
mins (A, D, E, K) should be measured to assist in diagnosis. 
Genetic testing remains the gold standard, with pathogenic 
APOB variants confirming FHBL. In cases of unexpectedly 
severe liver disease, additional screening for polygenic risk 
variations (ANGPTL3, PCSK9, MTTP, PNPLA3, TM6SF2, etc.) 
is warranted. FHBL must be distinguished from other inher-
ited and secondary causes of hypolipidemia.4,7 The detailed 
differential diagnosis is shown in Table 2.

For patients with hepatic involvement, further assessment 
should incorporate non-invasive tools and, where indicated, 
histopathology. Additional testing is recommended to further 
determine genetic susceptibility to alcohol consumption and 
viral hepatitis.10 It is important to emphasize that although 
MASLD and FHBL share hepatic steatosis as a common phe-
notype, they differ fundamentally in etiology and serum li-
pid profiles, although sometimes there are common mani-
festations in metabolic characteristics. Current guidelines 
(ABLRDF 2022, Japan 2024) provide structured diagnostic 
frameworks for FHBL (Table 3).3,7

Table 1.  Summary of genotype-related clinical phenotypes

Genotype Symptoms Refer-
ences

Ho- FHBL Serum lipid levels Significantly low plasma TC or LDL-C, or APOB 7,83,84

Serum vitamin levels Low vitamin E, A, D, K 7,81

Digestive system 
manifestations

Elevated serum transaminase levels, steatorrhea, hepatic steatosis, 
hepatic fibrosis and cirrhosis, hepatocellular carcinoma, hepatomegasia

7,81

Hematologi-
cal symptoms

Acanthocytosis 7,83

Neuromuscu-
lar symptoms

Loss of deep tendon reflexes, impaired proprioception, myopathy 7,81,83

Ophthalmological injury Night blindness, color vision defects, retinal degeneration, blindness 3,7,81

He- FHBL Serum lipid levels Hypolipemia 83

Digestive system 
manifestations

Hepatic steatosis and fibrosis 83,85

Ho-FHBL, homozygous or compound heterozygous familial hypobetalipoproteinemia patients; He-FHBL, heterozygous familial hypobetalipoproteinemia patients; TC, 
total cholesterol; LDL-C, low-density lipoprotein cholesterol; APOB, apolipoprotein B.
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Treatment
The treatment of FHBL aims to correct metabolic abnormali-
ties, prevent and manage complications, and optimize long-
term outcomes. The cornerstone of treatment is adherence 
to a low-fat diet combined with vitamin supplementation. In 
a 40-year follow-up of three homozygous patients, high-dose 
vitamins and strict dietary fat control maintained symptom 
stability, with only one case developing mild liver steatosis, 
inflammation, and fibrosis in late adulthood.82 Clinical man-
agement should be individualized according to the genotype 
and phenotype severity. For He-FHBL patients with markedly 
low APOB-containing lipoprotein levels, treatment and follow-
up should be conducted at the same level as for Ho-FHBL pa-
tients. Prognosis depends on genetic variants, environmental 
exposures, timeliness of diagnosis, patient adherence, and 
other contributing factors.

Nutrition
Ho-FHBL patients, as well as He-FHBL patients with gastro-
intestinal symptoms, should maintain adequate caloric in-
take while limiting fat intake to <30% of total caloric intake, 
ideally around 20%,81,83 with some guidelines even recom-
mending <10%–15%.4 Medium-chain triglycerides are pre-
ferred.84 Attention should be paid to controlling the propor-
tion of total fat intake in infants to address growth retardation 
and intestinal lipid malabsorption.3,7,81,96 Effective treatment 
has been reported using formula diets containing 25% total 
fat, primarily composed of medium-chain triglycerides.29 No-
tably, some patients showed gastrointestinal symptom im-
provement after spontaneously adopting a markedly low-fat 
or gluten-free diet.23,97 Oral supplementation with essential 
fatty acids is also recommended.7,81

Vitamin supplementation
For all Ho-FHBL patients, adequate vitamin supplementation 
is essential to prevent and potentially ameliorate complica-

tions, particularly those involving the nervous system and 
vision. High-dose vitamin E is especially important, as it may 
prevent retinal degeneration and neurological symptoms.98 
Recommended vitamin E dosages include 100–300 IU/kg/
day in high-dose regimens,81,96 and 50 IU/kg/day as a main-
tenance dose.84 Even high doses may only raise serum vi-
tamin E levels to approximately 30% of the lower limit of 
normal. Vitamin A supplementation (100–400 IU/kg/day) is 
recommended to prevent ophthalmic complications.7,81,99–102 
The treatment goal should be at the lower normal limit to 
avoid toxicity. Supplementation with vitamin D (800–1,200 
IU/day), vitamin K (5–35 mg/week or 5 mg/day), iron, folic 
acid, and vitamin B12 should be considered when clinically 
indicated.7 Of note, some studies found no evidence support-
ing vitamin E supplementation in He-FHBL patients,103 al-
though certain guidelines recommend its use in more symp-
tomatic cases.4

Management of liver injury
For all patients with liver injury, long-term follow-up is in-
dispensable. Dietary interventions, regular exercise, and 
weight reduction represent fundamental strategies for 
managing liver involvement,104–106 which can reduce liver 
fat content and alleviate steatohepatitis and fibrosis to a 
certain extent. Vitamin E has been proposed as a poten-
tial treatment option.104 Notably, a recent randomized con-
trolled trial conducted in a population with metabolic dys-
function-associated steatohepatitis demonstrated that daily 
administration of 300 mg of vitamin E significantly improved 
hepatic steatosis, inflammation, and fibrosis.106 Previously, 
the PIVENS trial also demonstrated that vitamin E (800 IU/
day) was effective in improving hepatic steatosis and lobu-
lar inflammation, as well as in reducing serum alanine and 
aspartate aminotransferase levels.108 Therefore, oral ad-
ministration of vitamin E is a valuable treatment option for 
patients with FHBL combined with liver injury. Finally, in 
cases of liver decompensation and HCC, liver transplanta-

Fig. 4.  Contributing factors to liver disease progression in FHBL. The progression of liver disease in FHBL patients involves numerous factors, mainly including 
zygosity, truncated protein length, additional insults, and polygenic mutations. The progression and prediction of the disease need to be analyzed based on specific 
circumstances. FHBL, familial hypobetalipoproteinemia assembly and secretion defect type 2; MAFL, metabolic dysfunction-associated fatty liver; MASH, metabolic 
dysfunction-associated steatohepatitis; APOB, apolipoprotein B; MTTP, microsomal triglyceride transfer protein; PCSK9, proprotein convertase subtilisin/kexin type 9; 
SAR1B, secretion-associated RAS-related GTPase 1B; ANGPTL3, angiopoietin-like 3.



Journal of Clinical and Translational Hepatology 20258

Lou T.W. et al: Familial hypobetalipoproteinemia related liver diseases

tion should be considered as a potential treatment.

Future perspective

Familial hypobetalipoproteinemia, primarily caused by APOB 
variants, disrupts lipoprotein metabolism, leading to mark-
edly reduced plasma LDL-C and APOB levels. The disorder 
exhibits significant genotypic and phenotypic heterogene-
ity. Ho-FHBL patients often present with severe multisystem 
complications, while He-FHBL ones may remain asympto-
matic or only develop mild hepatic manifestations. Advances 
in molecular genetics have elucidated the role of APOB vari-
ants in impairing VLDL assembly, secretion, and clearance, 
with genotype-phenotype correlations emphasizing the im-
pact of truncation length on disease severity.

Despite research progress, critical gaps still remain. Epi-
demiological data are skewed toward Western populations, 
necessitating global studies to clarify regional prevalence 
and genetic diversity. The mechanisms underlying FHBL re-
lated hepatic steatosis, particularly fibrosis, are incompletely 
understood and warrant further in-depth investigation. The 

interplay between FHBL and modifier genes highlights the 
need for comprehensive genetic profiling to predict disease 
progression. In particular, the lack of reliable prognostic 
biomarkers limits our ability to identify patients at risk of 
advanced liver disease. Multi-omics approaches, including 
lipidomics, transcriptomics, and microbiome profiling, may 
uncover novel biomarkers and therapeutic targets in the fu-
ture.

From a translational perspective, clarifying APOB variants 
and truncation length–kinetics can aid in predicting residual 
protein function, the likelihood of hepatic involvement, and 
the necessity for long-term management and surveillance. 
Recognition of ER stress, oxidative injury, and autophagy 
dysfunction not only advances mechanistic understanding 
but also points to potential therapeutic options, such as an-
tioxidants or ER stress–targeted interventions, which may 
complement standard management. Epidemiological evi-
dence reinforces the importance of genetic testing and early 
recognition to enable tailored surveillance and nutritional 
interventions, while clinical data indicate that oral vitamin 
E may be a valuable therapeutic choice for FHBL patients 

Table 2.  Differential diagnosis framework for FHBL and various forms of hypolipidemia

I. Primary/genetic causes

Disease/Factor Inheritance pattern Key differentiator

Abetalipopro-
teinemia (ABL)

Autosomal recessive Undetectable serum LDL-C and APOB; Severe malabsorption, acantho-
cytosis, retinopathy, or neurological disorders in infancy/childhood;  
Caused by the MTTP gene mutation

Chylomicron reten-
tion disease (CRD)

Autosomal recessive Low serum LDL-C, TC, and HDL but normal serum TG; Severe malab-
sorption in infancy/childhood; Caused by the SAR1B gene mutation

PCSK9 deficiency Autosomal dominant Low but detectable serum LDL-C with no specific clinical com-
plications; Caused by PCSK9 loss-of-function mutation

ANGPTL3 deficiency Autosomal dominant Low levels of all major serum lipoprotein fractions (LDL-C, HDL-C, TC, 
etc.) with no specific clinical complications; Caused by ANGPTL3  
loss-of-function mutation

II. Secondary causes

System Etiology Key Differentiator

Pharmacological Clear history of statin use/estrogen or anti-estro-
gen therapy/PCSK9 inhibitors/Ezetimibe, etc

Nutritional Malnutrition History of starvation/eating disor-
ders; improves with feeding

Steatorrhea/Malabsorption Syndromes History of gluten intolerance/Crohn’s disease/short 
bowel syndrome/chronic pancreatitis, etc. Often pre-
sents with chronic diarrhea, bloating, and weight loss.

Endocrine Hyperthyroidism Symptoms of hyperthyroidism and ab-
normal thyroid function.

Hepatic Advanced cirrhosis/Severe liver failure Accompanied by jaundice, ascites, elevated  
bilirubin/INR, low albumin, etc

Hematologic/Oncologic Megaloblastic anemia Low serum Vitamin B12 and/or folate levels

Cancer Signs of cachexia and weight loss. Evidence 
of active malignancy on imaging or biopsy

Inflammatory Infection/Inflammation Elevated acute phase reactants. Symptoms of ac-
tive inflammatory disease or chronic infection

Renal Chronic kidney disease Hypolipidemia can be caused by long-term dialysis 
combined with malnutrition and chronic inflammation

FHBL, familial hypobetalipoproteinemia; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; APOB, apolipoprotein B; TG, triglyceride; HDL-C, high-density 
lipoprotein cholesterol; PCSK9, proprotein convertase subtilisin/kexin type 9; ANGPTL3, angiopoietin-related protein 3.
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with liver injury, pending confirmation in prospective FHBL-
specific trials.

Conclusions

Early diagnosis via lipid profiling and genetic testing is piv-
otal. Management focuses on dietary fat restriction, lipid-
soluble vitamin supplementation, and vigilant monitoring of 
liver injury. Emerging therapies targeting metabolic path-
ways (e.g., vitamin E) show promise but require validation in 
FHBL-specific cohorts. Gene therapy represents a future-ori-
ented strategy for FHBL, with the potential to correct APOB 
defects and prevent progressive liver injury. The ultimate 
goal is to bridge molecular insights with tailored therapeutic 
strategies, providing more ideas for the diagnosis and man-
agement of FHBL.
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